Section of Cell and Developmental Biology
Division of Biological Sciences
​University of California, San Diego
PUBLICATIONS
2021 -
Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Functional differences between rodent and human PD-1 linked to evolutionary divergence. Sci Immunol. 2025;10(103):eads6295. Epub 20250103. doi: 10.1126/sciimmunol.ads6295. PubMed PMID: 39752535. [Link]
​
Borowska MT, Liu LD, Caveney NA, Jude KM, Kim WJ, Masubuchi T, Hui E, Majzner RG, Garcia KC. Orientation-dependent CD45 inhibition with viral and engineered ligands. Sci Immunol. 2024;9(100):eadp0707. Epub 20241025. doi: 10.1126/sciimmunol.adp0707. PubMed PMID: 39454026; PMCID: PMC11537708. [Link]
​Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Evolutionary fingerprint in rodent PD1 confers weakened activity and enhanced tumor immunity compared to human PD1. bioRxiv. 2024. Epub 20240924. doi: 10.1101/2024.09.21.614250. PubMed PMID: 39372757; PMCID: PMC11451736. [Link]
Tang Z, Zhong MC, Qian J, Galindo CC, Davidson D, Li J, Zhao Y, Hui E, Veillette A. CD47 masks pro-phagocytic ligands in cis on tumor cells to suppress antitumor immunity. Nat Immunol. 2023;24(12):2032-41. Epub 20231109. doi: 10.1038/s41590-023-01671-2. PubMed PMID: 37945822. [Link]
​
Zhao Y, Caron C, Chan YY, Lee CK, Xu X, Zhang J, Masubuchi T, Wu C, Bui JD, Hui E. cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8+ T cell function and anti-tumor immunity. Immunity. 2023 May 8:S1074-7613(23)00173-5. doi: 10.1016/j.immuni.2023.04.005. PMID: 37160118. [Link]
Xu X, Dennett P, Zhang J, Sherrard A, Zhao Y, Masubuchi T, Bui JD, Chen X, Hui E. CTLA4 depletes T cell endogenous and trogocytosed B7 ligands via cis-endocytosis. J Exp Med. 2023;220(7). Epub 20230412. doi: 10.1084/jem.20221391. PMID: 37042938. [Link]
Podolsky KA, Masubuchi T, Debelouchina GT, Hui E, Devaraj NK. In Situ Assembly of Transmembrane Proteins from Expressed and Synthetic Components in Giant Unilamellar Vesicles. ACS Chem Biol. 2022 May 20;17(5):1015-1021. Epub 2022 Apr 28. PMID: 35482050 [Link]
Banta KL*, Xu X*, Chitre AS, Au-Yeung A, Takahashi C, O'Gorman WE, Wu TD, Mittman S, Cubas R, Comps-Agrar L, Fulzele A, Bennett EJ, Grogan JL, Hui E, Chiang EY, Mellman I. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. Immunity. 2022 Mar 8;55(3):512-526.e9. PMID: 35263569 [Link] *Equal contributions
​
Highlights:
Coblockade of TIGIT and PD-1 Optimizes Antitumor CD8+ T-cell Response. [Cancer Discovery, 2022]
Xin B, Yang M, Wu P, Du L, Deng X, Hui E, Feng GS. Enhancing the therapeutic efficacy of programmed death ligand 1 antibody for metastasized liver cancer by overcoming hepatic immunotolerance in mice. Hepatology. 2021 Dec 3. PMID: 34860431 [Link]
​
Xu X*, Masubuchi T*, Cai Q, Zhao Y, Hui E. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. Elife. 2021;10. Epub 2021/11/05. doi: 10.7554/eLife.74276. PubMed PMID: 34734802. [Link] *Equal contributions
​
2017 - 2020
​
Wu W*, Zhou Q*, Masubuchi T*, Shi X*, Li H, Xu X, Huang M, Meng L, He X, Zhu H, Gao S, Zhang N, Jing R, Sun J, Wang H, Hui E, Wong CC, Xu C. Multiple Signaling Roles of CD3epsilon and Its Application in CAR-T Cell Therapy. Cell. 2020. PubMed PMID: 32730808. [Link] *Equal contributions
​
Highlights:
-
CD3ε tunes CAR T cell anticancer activity [Nature Reviews Immunology, 2020]
Xu X*., Hou B*., Fulzele A., Masubuchi T., Zhao Y., Wu Z., Hu Y., Jiang Y., Ma Y., Wang H., Bennett E., Fu G., Hui E. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. Journal of Cell Biology, 2020 [Link] * Equal contributions
​
Zhao Y, Lee CK, Lin CH, Gassen RB, Xu X, Huang Z, Xiao C, Bonorino C, Lu LF, Bui JD, Hui E. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity. 2019 Nov 15. PMID: 31757674. [Link]
​
Comments:
-
Dimers Aren’t Forever: CD80 Breaks up with PD-L1 [Immunity, 2019]
Highlights:
-
Checkpoint cross-talk [Science, 2020]
-
Cis interactions make immune checkpoint blockade more trans-parent [Science Immunology, 2020]
-
CD80 Dimerization with PD-L1 in Cis Disrupts CTLA4–CD80 Interactions [Cancer Discovery, 2019]
​
Sasmal DK, Feng W, Roy S, Leung P, He Y, Cai C, Cao G, Lian H, Qin J, Hui E, Schreiber H, Adams EJ, Huang J. TCR-pMHC bond conformation controls TCR ligand discrimination. Cell Mol Immunol. 2019 Sep 17. doi: 10.1038/s41423-019-0273-6. [Link]
Hui, E. Understanding T cell signaling using membrane reconstitution. Immunol Rev. 2019 Sep;291(1):44-56. doi: 10.1111/imr.12767. [Link]
Hui, E. Immune checkpoint inhibitors. J Cell Biol. 2019 Feb 13. pii: jcb.201810035. [Link]
​
Zhao, Y., Harrison, D. L., Song, Y., Ji, J., Huang, J., and Hui, E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep 2018;24:379-90 e376. [Link]
​
Carbone CB, Kern N, Fernandes RA, Hui E, Su X, Garcia KC, Vale RD. In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9338-E9345. [Link]
Hui, E., Cheung, J., Zhu, J., Su, X., Taylor, M.J., Wallweber, H., Sasmal, D.K., Huang, J., Kim, J.M., Mellman, I., Vale, R.D. The T-cell costimulatory receptor CD28 is a primary target of PD-1 mediated inhibition. (2017) Science. Mar 31;355(6332):1428-1433 PMID: 28280247 [Link]
​
Comments:
-
T cells: Successful checkpoint blockade requires positive co-stimulation. [Nat Rev Immunol. 2017]
-
Costimulation, a surprising connection for immunotherapy. [Science. 2017]
-
Two Strings in One Bow: PD-1 Negatively Regulates via Co-receptor CD28 on T Cells. [Immunity. 2017]
​​
PREVIOUS WORK
Su, X., Diltev, J.A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D.S., Taunton, J., Rosen, M.K., Vale, R.D. Phase separation of signaling molecules promotes T cell receptor signal transduction (2016) Science. 352(6285):595-9. PMID: 27056144. PMCID: PMC4892427
Chang, C.W., Hui, E., Bai, J., Bruns, D., Chapman, E.R., Jackson, M.B. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores (2015) J Neurosci 8;35(14):5772-80. PMID: 25855187
Hui, E. & Vale, R.D. In vitro membrane reconstitution of the T cell receptor proximal signaling network (2014) Nat Struct Mol Biol 21(2):133-42. PMCID: PMC3130839
Liu, H., Bai, H., Hui, E., Yang, L., Evans, C., Wang, Z., and Chapman, E.R. Synaptotagmin 7 Functions as a Ca2+ sensor for synaptic vesicle replenishment (2014) Elife 3:e01524. PMCID: PMC3930910
Hui, E.*, Gaffaney, J. D.*, Wang, Z., Johnson, C. P., Evans, C. S., and Chapman, E. R. Mechanism and function of synaptotagmin-mediated membrane apposition (2011) Nat Struct Mol Biol 18, 813-821. *Equal contribution.
Zhang, Z., Hui, E., Chapman, E. R., and Jackson, M. B. Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions (2010) Mol Biol Cell 21, 2821-2831. PMCID: PMC2921110
Zhang, Z., Hui, E., Chapman, E. R., and Jackson, M. B. (2009) Phosphatidylserine regulation of Ca2+ triggered exocytosis and fusion pores in PC12 cells, Mol Biol Cell 20, 5086-5095. PMCID: PMC2793286
Hui, E.*, Johnson, C. P.*, Yao, J.*, Dunning, F. M., and Chapman, E. R. (2009) Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion, Cell 138, 709-721. PMCID: PMC2758036 *Equal contribution.
Shahin, V., Datta, D., Hui, E., Henderson, R. M., Chapman, E. R., and Edwardson, J. M. (2008) Synaptotagmin perturbs the structure of phospholipid bilayers, Biochemistry 47, 2143-2152.
Paddock, B. E., Striegel, A. R., Hui, E., Chapman, E. R., and Reist, N. E. (2008) Ca2+-dependent, phospholipid-binding residues of synaptotagmin are critical for excitation-secretion coupling in vivo, J Neurosci 28, 7458-7466. PMCID: PMC2949296
Gaffaney, J. D., Dunning, F. M., Wang, Z., Hui, E., and Chapman, E. R. (2008) Synaptotagmin C2B domain regulates Ca2+-triggered fusion in vitro: critical residues revealed by scanning alanine mutagenesis, J Biol Chem 283, 31763-31775. PMCID: PMC2581593
Chicka, M. C., Hui, E., Liu, H., and Chapman, E. R. (2008) Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+, Nat Struct Mol Biol 15, 827-835. PMCID: PMC2570314
Hui, E., Bai, J., and Chapman, E. R. (2006) Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I, Biophys J 91, 1767-1777. PMCID: PMC1544279
Czibener, C., Sherer, N. M., Becker, S. M., Pypaert, M., Hui, E., Chapman, E. R., Mothes, W., and Andrews, N. W. (2006) Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes, J Cell Biol 174, 997-1007. PMCID: PMC2064391
Hui, E., Bai, J., Wang, P., Sugimori, M., Llinas, R. R., and Chapman, E. R. (2005) Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis, Proc Natl Acad Sci U S A 102, 5210-5214. PMCID: PMC556003